什么是胰岛素抵抗,它的机制是什么?

问题描述:

什么是胰岛素抵抗,它的机制是什么?
1个回答 分类:生物 2014-11-27

问题解答:

我来补答
胰岛素抵抗 ( i n s u l i n r e s i s t a n c e ,I R)是指胰岛素的外
周靶组织 ( 主要为骨骼肌、肝脏和脂肪组织)对内源性或
外源性胰岛素的敏感性和反应性降低,导致生理剂量的胰
岛素产生低于正常的生理效应.由于长期胰岛素抵抗和高
胰岛索血症所引发的一系列密切相关的临床异常如糖耐量
低减 (( i m p m r e d~ u e o s e t o l e r a n c e ,I G T)或 Ⅱ型糖尿病、
高血压、脂代谢紊乱、微量蛋白尿、多囊卵巢综合征、高
凝血症等统称为胰岛素抵抗综合征,又被称为代谢综合征
( m e t a b o l i c s y n d r o m e ) .
胰岛素抵抗的产生有着复杂的遗传因素和环境因素,
特别是与生活方式有很大的关系.I R的病因学涉及膳食因
素、高血糖的毒性作用、吸烟、肥胖、运动、妊娠等等.
I R的发生机制十分复杂,各种 I R均与胰岛素靶组织在细
胞受体、受体后和分子水平的结构与功能的缺陷以及胰岛
素作用调控激素异常等环节的障碍有关. 1胰岛素抵抗机制研究现状
1 . 1 胰岛素抵抗的诱发因素 胰岛素抵抗是一种复杂的表
现型,具有较强的遗传倾向,基因在很大程度上参与了胰
岛素抵抗的发生及发展.与 I R有关的候选基因包括编码
甲一肾上腺素受体、糖原合成酶、激素敏感脂酶、脂蛋白
脂酶和胰岛素受体底物的基因.即使在非糖尿病及非肥胖
患者中,对胰岛素抵抗与高血压及脂质代谢异常关系的研
究表明,胰岛素抵抗至少部分与遗传有关.
环境因素对胰岛素抵抗亦起重要作用.肥胖被认为是
导致胰岛素抵抗最主要的因素,在2型糖尿病中,7 5 %患
者伴有肥胖.
生活方式亦可影响胰岛素的活性,即非遗传性的胰岛
素抵抗.高糖、高脂饮食等高热能饮食和活动量少是导致
胰岛素抵抗的主要原因.对于超重者,限制热能摄入,降
低体重可改善胰岛素抵抗.而运动锻炼则可通过增加肌肉
组织的超氧化酶、葡萄糖转运蛋 白4( G L U T一 4 )和毛细 血管数量,以及减少腹部脂肪组织来增强机体对胰岛索的
敏感性 ,从而改善患者的胰岛索抵抗[ 3 】 .
1 . 2氧化应激诱导胰岛素抵抗的分子机制 氧化应激是指 机体内活性氧 ( R O S )的生成增加和 ( 或)清除能力降
低,导致 R O S的生成和清除失衡.R O S具有重要的生理
作用,但过量则会引起分子 、细胞和机体的损伤.胰岛素
抵抗 ( I R )是指正常剂量的胰岛素产生低于正常生物学效
应的一种状态,也就是指机体对胰岛素的反应减退,主要
表现为胰岛素敏感组织 ( 肌肉、脂肪组织)葡萄糖摄取减
少及抑制肝葡萄糖输出作用减弱.大量研究表明,I R状态
下氧化应激的水平增加 ,R O S 作为功能性信号分子激活细
胞内多种应激敏感性信号通路,而这些信号通路与 I R密
切相关.
1 . 2 . 1胰岛素受体及受体底物 胰岛素受体 ( i n s u l i n r e c e p -
t o r ,I n s R)和胰岛素受体底物 ( i n s u l i n r ec e p t o r s u b s t r a t e ,
I F , S )家族中丝氨酸/ 苏氨酸位点磷酸化水平升高会降低其
酪氨酸的磷酸化水平,从而削弱胰岛素的作用.丝氨酸/
苏氨酸位点的磷酸化抑制 I R S、I n s R及下游分子结合 ,尤
其是磷脂酰肌醇3激酶 ( P I 3 K) ,导致胰岛素的作用包括
胰岛素活化蛋白激酶 B的激活和葡萄糖运输减弱.另外 ,
氧化应激可使酪氨酸磷酸酶类 ( P T P a s e s ,具有磷酸化和
去磷酸化双重作用)失活.这些酶在调节信号转导包括应
激活化信号通路中具有重要作用.酪氨酸磷酸化/ 去磷酸
化循环与脂肪细胞及肌肉中胰岛素刺激的葡萄糖转运密切
相关.虽然选择性可逆抑制某些 P T P a s e s ,例如 P T P一1 B ,
可以增强胰岛索敏感性 ,但是由于酪氨酸磷酸化需要 P T -
P a s e s 的催化活性 ,因此可能导致 I R.给予阿司匹林治疗
能改变 I R S蛋白磷酸化位点 ,降低丝氨酸磷酸化水平,增
加酪氨酸的磷酸化.基因剔除研究显示 I R S一1杂合突变
鼠 ( I R S一1+ /一)表型正常 ,I l l S一1纯合突变鼠 ( I R S

I / )出现轻度的 I R,而 I I I 8 R和 I R S一1 双杂合突变
鼠 ( I n s R+ /一,I R S一1+ /一)则出现 m 和糖尿病口 .
有研究表明,I R S一1 基 因及蛋白的表达在 I R和2型糖尿
病患者中均有下降 J .长期体育锻炼可促进I R S一1的表
达 ,而长期高脂饮食则使其表达降低.I R S一1 基因剔除大
鼠的胰岛组织表现出明显的胰岛素分泌缺陷,胰岛素分泌
减少 2倍.结果表明,I R S—l 不仅是胰岛素生物学效应的 中间体,而且对胰岛的分泌功能也有重要作用.
1 . 2 . 2 I K K / N F~K B依赖途径 核转录因子 N F— K B存在
于人体绝大部分细胞,与许多基因的表达调控.参与免疫
反应的早期和炎症反应各阶段的许多分子都受 N F—K B的
调控,包括:T N F— 、I L一 1 B 、I L一 2 、I L一 6 、I L一 8 、I L

1 2 、i N O S 、c o x 2 、趋化因子、粘附分子、集落刺激因
子等.此外,锌指蛋白. 4 2 0 、血红素加氧酶 一1( H O一1 )
等一些抗炎和与细胞凋亡有关的分子如:肿瘤坏死因子受
体相关因子 一1( t u m o u r —n e c r o s i s f a c t o r r e c e p t o r a s s o c i a t e d
f a c t o r一1 ,T R A F一1 ) ,抗细胞凋亡的蛋白 一1和 一2( i n —
h i b i t o r o f a p o p t o s i s 1 / 2, I A P 1 /l A P 2 ) ,T N F受体相关因子
( r e c e p t o r—a s s o c i a t e d f a c t o r s,T R A F 1/ T R AF 2) ,B c l 一2
同源体 A 1 / B f l一1 和 I E X—I L也都受 N F—K B的调控.
在静息状态下,无活性的 N F—K B以异源性三聚体
( P S 0 ,1 : ' 6 5 ,I K B c ~ )形式存在于胞浆中.当细胞受到应激
时,I K K ( I K B K i n a s e )复合体被磷酸化;I K K复合体包含
两个催 化亚单 位 ( I K K c t ,I K K f 3 )和一 个 连接 亚单 位
( I K K ~ / N E MO) .磷酸化的 I K K复合体继而在 S 和 S 3 6 两
位点磷酸化 I K B o t ,I K B ~ x降解 ,N F—K B( 1 : ' 5 0,P 6 5 )转核
活化,从 而引 起 靶基 因的 表达M j j .大量 研 究 发 现, I K K ( x / J 3 介导细胞因子 ( T N F一旺 ,I L一 6等) 、化学趋化因
子、黏附分子 ( I C A M一1 ,V C A M一1 ,E—S e l e c t i n等)和
促凋亡基因等表达参与了高糖诱导血管内皮胰岛素抵抗和
内皮功能失常的调节,且 I K K o / 1 3此调控作用是 N F—K B
依赖的 ,即 I K Ka /[ 3 / I K B a /NF—K B ’ .
1 . 3脂肪源性细胞因子引起 I R 脂肪组织内分泌功能失调 是连接肥胖、I R和糖尿病问的重要桥梁,脂肪细胞源因子
表达异常是参与或加重 I R及损伤 B细胞功能从而诱发糖
尿病的重要 的分子机制 J .瘦 素 ( 1 e p t i n )和瘦 素受体
( O B— R)是由肥胖基因 o b表达、脂肪细胞分泌的产物.
作为脂肪源性细胞因子,有研究发现 胰岛素和胰高血糖
素发出信号给脂肪细胞,使脂肪释放瘦素,瘦素与来 自胰
岛上分泌胰岛素及胰高血糖素的细胞上的 O B—R结合,
通过激活胰 岛 B细胞上的 A T P敏感 K 通道 ,减少依赖
C a 2 的蛋白激酶 ( P K C )的活动,抑制基础及葡萄糖刺激
的胰岛素分泌.同时使胰岛素储存脂肪作用减低 ,从而诱
发 I R,促进 Ⅱ型糖尿病发展.而瘦素缺乏 ( 瘦素基因变
异)和瘦素作用障碍 ( O B—R缺陷)都将导致高胰岛素
血症,使机体的脂肪增多,肌肉内发生 I R.
肿瘤坏死因子 ( T N F— d )和抵抗素 ( r e s i s t i n )的作
用机制是其与在胰岛素敏感组织上的受体结合 ,对胰岛素
信号通路的一个或几个位点起作用.基因重组的抵抗素能 使正常小鼠的糖耐量受损,并降低胰岛素激发的脂肪细胞
的糖摄取及胰岛素的敏感性.脂联素通过脂联素受体增加
脂肪酸氧化 ,减少肝脏和肌肉细胞内甘油三酯含量等作用
最终都涉及到细胞核内的氧化应激反应 .在人类 ,脂
联素与全身的胰岛素敏感性成正相关.而脂联素基因自身
和 ( 或)编码脂联素调节蛋白的基因的突变 ( 如 P P A R一
)与低脂联素血症、I R和Ⅱ型糖尿病均有关.而 P P A R s是核激素受体配体激活的转录因子的超家族.其中 P P A R

富含于脂肪组织,并对维持人类胰岛素敏感性,葡萄
糖稳态是不可缺少的.通过对基因打靶技术造成 P P A R缺
陷的基因敲出小鼠研究显示,这种小鼠外周组织和肝脏的
胰岛素敏感性均增强.而与野生型小鼠相比,在葡萄糖耐
量试验时,其胰岛素的浓度较低.被激活的 P P A R一 能
通过脂肪细胞分化及增加脂质和糖代谢中基因转录来增强
胰岛素的活性.当P P A R一 基因突变或受其他因素如 I N F

抑制时,可致 I R .此外有研究显示,P P A R一 的配体
不仅能增强胰岛素介导的葡萄糖摄取和减轻炎症反应 ,同
时能逆转 I R的主要缺陷,抑制动脉粥硬化的发生及改善
内皮功能.因此,P P A R一 的配体可能在阻止 I R进程方
面发挥了不容忽视的作用.
2胰岛素抵抗机制研究进展
2 . 1 I K K ( x / [ 3 介导的 N F—K B非依赖机制 I K K ~ r 3 介导的
N F—K B依赖机制引起细胞内多重炎症因子的表达从而引
起胰岛素抵抗在前面已经介绍.但 I K K a / ~是否存在 N F—
K B非依赖机制来调控高糖诱导血管内皮胰岛素抵抗和内
皮功能失常?许多研究表明,R a f 与 I K K a / ~可相互作用并
磷酸化 I K K o / 1 3 ,也就是说,R a f 可能是 I K K a / f 3 上游激酶 . 那么,与 R a f 同为丝氨酸激酶且有相似结构的 I K K a /
B是否也可磷酸化 R a f ,从而调控 MA P K通路?换句话说 ,
I K K c d~ 3 除了经典的 N F—K B通路 ( I K K a / [ 3 / I K B a / N F—
K B )外,是否存在 N F—K B非依赖途径,如 I K K a / B / I R s

1 / P I 3 K / A k t 或/ 和 I K K a / B / R a f 一1 / MA P K ?前一途径虽
然 G a o z等曾有过报道,认为 I K K [ 3 在 T N F—o c 作用下也
能直接磷酸化 I R S一1( S e t 3 1 2 ) ,阻碍了 I R S一1与 I K
的结合和激活,从而影响到其下游的信号转导,产生胰岛素抵抗 .
N F—K B非依赖机制又包括两条通路,即 I K K a / B / I R s

1 / P I K / A k t / N O和I K K o / 1 3 / R a f ~1 / MA P K / E T一1 .具体
地说,I K K p激活使 I R S一1 丝氨酸残基磷酸化,阻碍了
I R S一1与 I P 1 K的结合和激活,从 而抑制下游 P I 3 K / A k t /
N O通路;同时活化的I K K a / i ~ 可磷酸化 R a f 一1 ,激活 R a f

1 /M A P K / E T一1通路,此消彼长 ,导致血管内皮细胞
I R S一1 / P I , K / A k t / N O和 R a f 一1 /MA P K / E T一1间失衡,造
成胰岛素抵抗和内皮功能失常.这一新的研究进一步探讨
糖尿病血管病变的分子机制 ,为寻找糖尿病血管病变的防
治的新分子靶点和治疗策略拓展新的思路.2 . 2多重功能蛋白 B—a r r e s t i n 2的调控 裴钢 “ 在 H型糖 尿病模型小鼠肝脏样品中的研究发现 B—a i T e S—t i n 2的表
达水平显著下调 ,暗示了其在 I I 型糖尿病中的潜在作用
1 3 一a r r e s t i n 2介导了胰岛素信号通路中新的信号复合物的
形成,这一复合物包含 I R / A k t / 1 3一a r r e s t i n 2 / S r c ,并对胰
岛素信号的传递以及胰岛素代谢功能的行使起到了至关重
要的作用.B—a r r e s t i n 2在这个复合物中起到了支架蛋白
的作用,它将 A k t 、S r c与 I R联系在一起 ,将上游的胰岛
素受体和下游的激酶信号分子偶联起来 ,从而促进了机体
对胰岛素的敏感性.1 3一a r r e s t i n 2水平的降低或功能缺失致使该 1 3一a r r e s t i B 2的缺失或功能异常直接导致复合物的
解聚、胰岛素信号的阻滞并最终导致胰岛素耐受.有关专
家认为,该项研究不仅揭示了胰岛素抵抗 2型糖尿病发生
的新机制,并且为胰岛素抵抗及 2型尿病的治疗提供了可
借鉴的新策略,提示 8一a l T e S 蛋白及 1 3一a r r e s t i n 2蛋白/ 胰
岛素受体复合体有望成研发胰岛素抵抗相关代谢性疾病治
疗药物的新靶点
2 . 3微量元素对胰岛素抵抗的影响 窦梅 在其综述 中
阐述,微量元素如镁、铬在葡萄糖代谢过程中发挥着重要
作用.胰岛素抵抗和糖尿病状态下存在着镁、铬等微量元
素缺乏现象.镁作为高能磷酸化代谢途径酶的必需辅助因
子参与能量代谢、蛋 白质合成和调节细胞膜的葡萄糖转
运.近年发现,镁与糖尿病 、胰岛素抵抗关系密切.细胞 内镁离子浓度太低可导致胰岛素受体酪氨酸激酶活性下
降,并抑制 G L U T一4的转位,引起外周组织对葡萄糖摄
取能力下降.同时由于细胞内镁缺乏,对 P K C的抑制作用
减弱.P K C的活性增加可以通过促进 I R S一1 丝/ 苏氨酸磷
酸化使其与胰岛索受体结合能力下降,并抑制其对下游
P B—K的激活作用.细胞内镁缺乏还可导致细胞 内葡萄
糖利用降低,由此促进了外周组织的胰岛素抵抗.另外,
胞内镁离子浓度的下降必然导致胞内钙浓度增加,细胞内
钙离子的增加也是产生胰岛素抵抗的相关因素.低血镁与
血清中T N F— 和 C反应蛋 白浓度升高也存在很大关联,
表明镁缺乏也参与了轻度慢性炎症综合征的发生、发展,
并通过这个途径导致了葡萄糖代谢紊乱.
I R作为人类多种复杂疾病发病机制中的共同环节而备
受重视 ,但 I R的形成是一个多因素相互联系的过程.随
着已经报道了的诸多分子调控机制,如 I R信号转导机制, 炎症因子机制等在临床已被广泛应用,而关于 I R新的思
路如I K K ~ 1 3介导的 N F—K B非依赖机制;多重功能蛋白
B—a r r e s t i n 2的调控以及微量元素的参与等也在逐步完善,
虽然其具体机制 目前尚不能完全明了,但相信在不久的将
来能从根本上揭示 1 R的发生机制,为临床新型治疗途径
和新型药物的开发提供了基础.
 
 
展开全文阅读
剩余:2000