晶硅太阳能电池工作原理

问题描述:

晶硅太阳能电池工作原理
1个回答 分类:综合 2014-12-12

问题解答:

我来补答
一、硅太阳能电池   1.硅太阳能电池工作原理与结构   太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下:   硅材料是一种半导体材料,太阳能电池发电的原理主要就是利用这种半导体的光电效应.一般半导体的分子结构是这样的:   上图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子.   当硅晶体中掺入其他的杂质,如硼(黑色或银灰色固体,熔点2300℃,沸点3658℃,密度2.34克/厘米,硬度仅次于金刚石,在室温下较稳定,可与氮、碳、硅作用,高温下硼还与许多金属和金属氧化物反应,形成金属硼化物.这些化合物通常是高硬度、耐熔、高导电率和化学惰性的物质.)、磷等,当掺入硼时,硅晶体中就会存在一个空穴,它的形成可以参照下图说明:
  图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子,而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生如图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体.   (附,什么是P型半导体呢?在半导体材料硅或锗晶体中掺入三价元素杂质可构成缺壳粒的P型半导体,掺入五价元素杂质可构成多余壳粒的N型半导体.)   同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体.黄色的为磷原子核,红色的为多余的电子,如下图所示:   
  P型半导体中含有较多的空穴,而N型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结.   
  当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层,界面的P型一侧带负电,N型一侧带正电.这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差.N区的电子汇扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个有N指向P的“内电场”,从而阻止扩散进行.达到平衡后,就形成了这样一个特殊的薄层形成电势差,从而形成PN结.当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流.然后在PN结中形成电势差,这就形成了电源.下面就是这样的电源图.   
  
由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大.但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结(如图 梳状电极),以增加入射光的面积.   另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用.为此,科学家们给它涂上了一层反射系数非常小的保护膜(如图),实际工业生产基本都是用化学气相沉积沉积一层氮化硅膜,厚度在1000埃左右.将反射损失减小到5%甚至更小.一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池(通常是36个)并联或串联起来使用,形成太阳能光电板.   2.硅太阳能电池的生产流程   通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成.   上述方法实际消耗的硅材料更多.为了节省材料,目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺.此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池.   化学气相沉积主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等.但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙.解决这一问题办法是先用 LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法.多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高.   二、纳米晶化学太阳能电池 非晶硅薄膜太阳能电池
  在太阳能电池中硅系太阳能电池无疑是发展最成熟的,但由于成本居高不下,远不能满足大规模推广应用的要求.为此,人们一直不断在工艺、新材料、电池薄膜化等方面进行探索,而这当中新近发展的纳米TiO2晶体化学能太阳能电池受到国内外科学家的重视.   以染料敏化纳米晶体太阳能电池(DSSCs)为例,这种电池主要包括镀有透明导电膜的玻璃基底,染料敏化的半导体材料、对电极以及电解质等几部分.   阳极:染料敏化半导体薄膜(TiO2膜)   阴极:镀铂的导电玻璃   电解质:I3/I   如图所示,白色小球表示TiO2,红色小球表示染料分子.染料分子吸收太阳光能跃迁到激发态,激发态不稳定,电子快速注入到紧邻的TiO2导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO2导带中的电于最终进入导电膜,然后通过外回路产生光电流.   纳米晶TiO2太阳能电池的优点在于它廉价的成本和简单的工艺及稳定的性能.其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上.但由于此类电池的研究和开发刚刚起步,估计不久的将来会逐步走上市场.   三、染料敏化TiO2太阳能电池的手工制作   1.制作二氧化钛膜   (1)先把二氧化钛粉末放入研钵中与粘合剂进行研磨   (2)接着用玻璃棒缓慢地在导电玻璃上进行涂膜   (3)把二氧化钛膜放入酒精灯下烧结10~15分钟,然后冷却   2.利用天然染料为二氧化钛着色   如图所示,把新鲜的或冰冻的黑梅、山梅、石榴籽或红茶,加一汤匙的水并进行挤压,然后把二氧化钛膜放进去进行着色,大约需要5分钟,直到膜层变成深紫色,如果膜层两面着色的不均匀,可以再放进去浸泡5分钟,然后用乙醇冲洗,并用柔软的纸轻轻地擦干.   3.制作正电极   由染料着色的TiO2为电子流出的一极(即负极).正电极可由导电玻璃的导电面(涂有导电的SnO2膜层)构成,利用一个简单的万用表就可以判断玻璃的那一面是可以导电的,利用手指也可以做出判断,导电面较为粗糙.如图所示,把非导电面标上‘+’,然后用铅笔在导电面上均匀地涂上一层石墨.   4.加入电解质   利用含碘离子的溶液作为太阳能电池的电解质,它主要用于还原和再生染料.如图所示,在二氧化钛膜表面上滴加一到两滴电解质即可.   5.组装电池   把着色后的二氧化钛膜面朝上放在桌上,在膜上面滴一到两滴含碘和碘离子的电解质,然后把正电极的导电面朝下压在二氧化钛膜上.把两片玻璃稍微错开,用两个夹子把电池夹住,两片玻璃暴露在外面的部分用以连接导线.这样,你的太阳能电池就做成了.   6.电池的测试   在室外太阳光下,检测你的太阳能电池是否可以产生电流.
编辑本段结构
  正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子. PN结
当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图:   正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子.而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体.   同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体.黄色的为磷原子核,红色的为多余的电子.   N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结.   当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层),界面的P型一侧带负电,N型一侧带正电.这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差.N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行.达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结.   当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流.然后在PN结中形成电势差,这就形成了电源   由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大.但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结(如图 梳状电极),以增加入射光的面积. 原理图
另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用.为此,科学家们给它涂上了一层反射系数非常小的保护膜(如图),将反射损失减小到5%甚至更小.一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池(通常是36个)并联或串联起来使用,形成太阳能光电板.
编辑本段发电原理
  太阳电池是一种对光有响应并能将光能转换成电力的器件.能产生光伏效应的材料有许多种,如:单晶硅,多晶硅, 非晶硅,砷化镓,硒铟铜等.它们的发电原理基本相同,现已晶体硅为例描述光发电过程. P型晶体硅经过掺杂磷可得N型硅,形成P-N结.   当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率.这个过程的的实质是:光子能量转换成电能的过程.
编辑本段生产流程
  通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成.   上述方法实际消耗的硅材料更多.为了节省材料,目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺.此外,液相外延法(LPPE)    生产线
化学气相沉积主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等.但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙.解决这一问题办法是先用 LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法.多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高.
 
 
展开全文阅读
剩余:2000
上一页:
下一页:判断题。