已知抛物线C:y^=2px(p>0)的焦点为F,直线l过定点A(4,0),且余抛物线交于P、Q两点.

问题描述:

已知抛物线C:y^=2px(p>0)的焦点为F,直线l过定点A(4,0),且余抛物线交于P、Q两点.
(1)若以弦PQ为直径的圆过原点O,求p的值.
(2)在(1)的条件下,若向量FP+向量FQ=向量FR,求动点R的轨迹方程
1个回答 分类:数学 2014-09-28

问题解答:

我来补答
分析:(Ⅰ)设出直线l的方程代入抛物线的方程消去x,设出P,Q的坐标,利用韦达定理表示出y1+y2和y1y2,利用 OP→•OQ→=0,求得0=x1x2+y1y2,求得p,则焦点坐标可得.
(Ⅱ)设出R,利用 FP→+FQ→=FR→求得x1+x2=x+1,y1+y2=y,进而根据y12=4x1,y22=4x2和FR中点坐标,利用kPQ=kMA求得x和y的关系式,当x1=x2时,R的坐标为(7,0),也满足y2=4x-28,进而推断出y2=4x-28即为动点R的轨迹方程.
(Ⅰ)设直线l方程为x=ky+4,代入y2=2px得y2-2kpy-8p=0
设P(x1,y1),Q(x2,y2),则有y1+y2=2kp,y1y2=-8p
而 OP→•OQ→=0,
故0=x1x2+y1y2=(ky1+4)(ky2+4)-8p=k2y1y2+4k(y1+y2)+16-8p
即0=-8k2 p+8k2p+16-8p,得p=2,焦点F(1,0).
(Ⅱ)设R(x,y),由 FP→+FQ→=FR→
得(x1-1,y1)+(x2-1,y3)=(x-1,y)
所以x1+x2=x+1,y1+y2=y
而y12=4x1,y22=4x2,
可得y(y1-y2)=(y1+y2)(y1-y2)=4(x1-x2)
又FR的中点坐标为 M(x+12,y2),
当x1≠x2时,利用kPQ=kMA有 4y=y1-y2x1-x2=y2x+12-4
整理得,y2=4x-28.
当x1=x2时,R的坐标为(7,0),也满足y2=4x-28.
所以y2=4x-28即为动点R的轨迹方程.
再问: 为什么设直线l方程为x=ky+4,而不是设直线l方程为y=k(x-4)
 
 
展开全文阅读
剩余:2000
上一页:解题方法 技巧
下一页:过程3