证明函数x^2+y^2≠0时,f(x,y)=sin(xy)/√(x^2+y^2),x^2+y^2=0时f(x,y)=0在

问题描述:

证明函数x^2+y^2≠0时,f(x,y)=sin(xy)/√(x^2+y^2),x^2+y^2=0时f(x,y)=0在(0,0)处连续
1个回答 分类:数学 2014-10-06

问题解答:

我来补答
注意:∫∫f(x,y)dxdy其实是一个常数,设a=∫∫f(x,y)dxdy
则:f(x,y)=[1-(x^2+y^2)]^0.5-πa/8
两边做二重积分得:
∫∫f(x,y)dxdy 积分区域为:x²+(y-1/2)²≤1/4,x≥0,圆的极坐标方程为:r=sinθ,θ:0--->π/2
=∫∫ {[1-(x^2+y^2)]^0.5-πa/8} dxdy
=∫∫ [1-(x^2+y^2)]^0.5dxdy-πa/8∫ dxdy
后一个被积函数为1,结果为区域面积,即半圆面积
=∫∫ [1-(x^2+y^2)]^0.5dxdy-(πa/8)*(1/2)*π(1/2)²
=∫∫ √(1-r²)*rdrdθ-(π²a/64)
=∫[0--->π/2]dθ∫[0--->sinθ] √(1-r²)*rdr-(π²a/64)
=1/2∫[0--->π/2]dθ∫[0--->sinθ] √(1-r²)d(r²)-(π²a/64)
=-(1/2)(2/3)∫[0--->π/2] (1-r²)^(3/2) |[0--->sinθ]dθ-(π²a/64)
=(1/3)∫[0--->π/2] (1-cos³θ) dθ-(π²a/64)
=(1/3)∫[0--->π/2] 1 dθ-(1/3)∫[0--->π/2] cos³θ dθ-(π²a/64)
=(1/3)(π/2)-(1/3)∫[0--->π/2] cos²θ d(sinθ)-(π²a/64)
=(1/3)(π/2)-(1/3)∫[0--->π/2] (1-sin²θ) d(sinθ)-(π²a/64)
=(1/3)(π/2)-(1/3)(sinθ-(1/3)sin³θ)-(π²a/64) |[0--->π/2]
=(π/6)-(1/3)(1-(1/3))-(π²a/64)
=(π/6)-(2/9)-(π²a/64)
因此:a=(π/6)-(2/9)-(π²a/64)
解得:a=[(π/6)-(2/9)]/[1+(π²/64)]=(32/9)*(3π-4)/(64+π²)
因此:f(x,y)=[1-(x^2+y^2)]^0.5-π/8*a
得:f(x,y)=[1-(x^2+y^2)]^0.5-(4π/9)*(3π-4)/(64+π²)
再问: 这是个证明题
再答: 嗯你说是就是吧
再问: 我需要证明过程
再答: 你到底采纳不采纳

验证过程一大堆
你写上去就是了
 
 
展开全文阅读
剩余:2000