高中数学题(导数的应用)

问题描述:

高中数学题(导数的应用)
已知f(x)= (2x-a)/(x2+2) (x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=1/x的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
1个回答 分类:数学 2014-09-17

问题解答:

我来补答
(Ⅰ)直接求出函数的导函数,转化成不等式恒成立问题解决即可;
(Ⅱ)利用韦达定理先求出|x1-x2|,变为不等式恒成立问题,再构造函数利用函数的导数求最值即可解决.(Ⅰ)f'(x)=4+2ax-2x2,∵f(x)在[-1,1]上是增函数,
∴f'(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立.①
设φ(x)=x2-ax-2,
①⇔{φ(1)=1-a-2≤0φ(-1)=1+a-2≤0⇔-1≤a≤1,
∵对x∈[-1,1],只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.
(Ⅱ)由4x+ax2-23x3=2x+13x3,得x=0,或x2-ax-2=0,
∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,
从而|x1-x2|=(x1+x2)2-4x1x2=a2+8.
∵-1≤a≤1,∴|x1-x2|=a2+8≤3.
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立.②
设g(t)=m2+tm-2=mt+(m2-2),
②⇔g(-1)=m2-m-2≥0且g(1)=m2+m-2≥0,
⇔m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
其取值范围是{m|m≥2,或m≤-2}.
 
 
展开全文阅读
剩余:2000