平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点

问题描述:

平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H
(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
..先说一下想法,..
快啊...
1个回答 分类:数学 2014-11-26

问题解答:

我来补答
先求出解析式,得到点C坐标,设D坐标(0,m),根据勾股定理得关于m的方程,若方程有解,则m存在,否则不存在;第(3)题,根据相似三角形对应边成比例以及点到直线距离公式,可以求得P坐标.估计你没有学习过,暂时不应该解此题,如果真需要,再为你解答.
设y=a(x+3)(x-1)=ax²+2ax-3a,所以-3a=3,所以a=-1,所以y=-x²-2x+3=-(x+1)²+4
所以C(-1,4),所以H(-1,0).
(2)设D(0,m),因为AC是斜边,所以CD²+AD²=AC²,即[1²+(m-4)²]+[(-3)²+m²]=(-3+1)²+4²,
解得m=1或m=3,所以这样的点D存在,且坐标为(0,1)和(0,3).
(3)设P坐标为(n,-n²-2n+3),……
再问: 然后勒?
再答: (3)设直线AC方程为y=kx+b,代入(-1,4)和(-3,0)得到k=2 b=6,所以y=2x+6, 设P坐标为(n,-n²-2n+3),P到直线AC的距离为d=|2n+n²+2n-3+6|/√5=|n²+4n+3|/√5, 所以PQ=|n²+4n+3|/√5,PC=√[(n+1)²+(-n²-2n-1)²],又AC=√(4+16)=√20,CH=4, 所以PQ/CH=PC/AC 所以得到(n+1)²(n+3)²=4(n+1)²+4(n+1)^4,因为n≠-1,所以(n+3)²=4+4(n+1)², 解得n=1/3,所以-n²-2n+3=20/9 所以P(1/3,20/9)
 
 
展开全文阅读
剩余:2000
上一页:示意图也请画出
下一页:拜托详细解答
也许感兴趣的知识