a,b,c为正实数,a^2+b^2+c^2=9,求证abc+1>3a

问题描述:

a,b,c为正实数,a^2+b^2+c^2=9,求证abc+1>3a
1个回答 分类:数学 2014-10-19

问题解答:

我来补答
正确的题应该是:设正实数a、b、c,满足a≤b≤c,且a^2+b^2+c^2=9.证明:abc+1>3a
证明:因为2bc=b^2+c^2-(c-b)^2,所以在a固定的时候(c-b)^2越大则bc越小,因为a≤b≤c,所以当b=a,c²=9-2a²时bc有最小值,即bc≥a√9-2a²,于是abc+1≥1+a²√9-2a²,若a√9-2a²≥3,则abc+1≥1+a²√9-2a²≥1+3a>3a,命题显然成立,若a√9-2a²<3,即a²(9-2a²)<9,则a²>3或a²<3/2,但9=a²+b²+c²≥3a²,即有a²≤3,于是只能取a²<3/2,于是√9-2a²>√6,于是abc+1≥1+a²√9-2a²>1+√6a²≥2*[(6)^1/4]a>3a(因为96>81),即a√9-2a²<3时命题也成立,于是命题成立,证毕.
 
 
展开全文阅读
剩余:2000