英语翻译上一段已经成功解决,这里还有几小段,我的分数不多了,Though the Waddington and von

问题描述:

英语翻译
上一段已经成功解决,这里还有几小段,我的分数不多了,
Though the Waddington and von Bertalanffy programs have not been confirmed in the typical accomplishments and representations in molecular biology in general,and molecular genetics in particular,there are interesting advances that fall between those searches for broad theories couched in mathematically precise differential equation form,and the narrow classes of mechanisms,usually described in qualitative multilevel causal language,that constitute the vast majority of current biomedical explainers.In traditional population genetics,one important exception is the ability to develop a powerful axiomatization of the subject that does bear strong analogies to equation based theories of physics.(For a detailed example see the Jacquard axiomatization of population genetics summarized in Schaffner (1993),Chapter 8.)
There are several other theories that are equation-based which can be identified in contemporary biomedicine; and in the remainder of this paper I discuss two of these in detail.My view is that these can disclose some important ways that very general and quantitative principles can be applied fruitfully in biology and medicine.They also disclose the limitations of this kind of
physics-oriented approach to biology,and a comparison of those areas where mathematical modeling works and at what points it begins to fail may indicate ways that systems biology can approach the issues of theories,models,and equations in this nascent area.
I will begin my discussion with a brief account of the development of the Hodgkin–Huxley Giant Squid Model for Action Potentials,a stunning accomplishment for which Hodgkin and Huxley shared the Nobel Prize in physiology or medicine in 1963.One of the current standard textbooks of neuroscience (Kandel et al.2000) states that 50 years after its publication,‘the Hodgkin–Huxley model stands as the most successful quantitative computational model in neural sciences if not all of biology’ (p.156).
1个回答 分类:英语 2014-11-22

问题解答:

我来补答
翻译如下,我还不是很满意,没有时间polish了,仅供参考.
Waddington 和 von Bertalanffy氏方法,尽管其贡献和代表性并没有在一般意义上得到分子生物学或者在特别意义上得到分子遗传学的确认,但还是在以下方面产生了有益的进展,即,它使我们的广泛的理论搜寻进步到精确的数学微分方程式的形式和通常以定性的多级因果语言来描述的机理的狭窄类别之间,由此构建了当代生物医学因果辨析的主体内容.在传统的统计遗传学中,一个重要的例外是把主题内容公式化的能力,这种公式化确实具有与物理学理论类似的函数表述.(更详细的例子,参见Schaffner(1993,第八章)总结的Jacquard群体遗传学公式).
在当代生物医学中,还有其他几个理论已经有基于函数的表述,在本文的随后部分我将详细讨论其中两个理论.我的观点是,我们这样做就能够揭示出一些重要的途径,即,非常一般化的数量化的原理是能够富有成果地应用于生物学和医学的.同时,通过揭示物理学导向的方法对生物学的限制,以及对数学模拟起作用的领域和系统生物学为什么衰弱之间的比较,表明系统生物学已经开始步入理论、模型和函数化的轨道.
我将简要描述Hodgkin–Huxley关于巨型墨鱼的动作电位模型,并以此开始我的讨论.Hodgkin和Huxley因这个模型的惊人成就而分享了1963年的诺贝尔生理学和医学奖.在这个模型提出50年之后,当代神经系统科学的一本标准教科书(Kandel et al.2000)对其评价是“Hodgkin–Huxley模型即使不是整个生物学至少也是神经科学的最成功的数量运算模型(第156页)”.
 
 
展开全文阅读
剩余:2000
上一页:椭圆简单性质
下一页:求解这个表格