求助,求一篇中文摘要的英文翻译.

问题描述:

求助,求一篇中文摘要的英文翻译.
层状双氢氧化物(简称LDHs)又称水滑石(HT),由于具有独特的层状结构和奇特的性能,添加到聚合物之中,具有环境友好、高效无毒、有效抑烟等优点,其相关研究已成了近几年研究的热点.稀土元素由于具有特殊的电子结构,使其在催化、发光、磁性等领域的应用具有很大的潜力,特别是作为耐火材料添加剂的相关领域的研究受到了广泛重视.从已报道的相关文献来看,一般是以螯合物形式将稀土元素负载到层状双氢氧化物的层间,而直接将稀土元素通过同晶取代置换到LDHs层板上的报道还很少.本论文将采用报道不多,制备简单的微波晶化低饱和共沉淀法,快速制备出一系列含稀土LDHs,考察了掺杂稀土量对LDHs结构的影响,并将其运用到聚合物中研究其对聚合物的阻燃性能、力学性能,抑烟性能等的影响,获得了以下具有创新性的结果.
通过低饱和态共沉淀法,辅助微波手段,制备了系列含稀土Ce和La的LDHs;并通过XRD和FT-IR等对其结构进行了表征,筛选出结晶度高,晶相单一的样品Zn-Al-Ce-LDHs(n(Zn2+)/n(Al3+)=x,n(Ce4+)/n(Al3+)=y),将其用于聚丙烯(PP)中,考察了复合材料的阻燃性能.当Zn-Al-Ce-LDHs添加量为10%时,将PP的极限氧指数由17.4%提高到42%,而且随着添加量的提高,极限氧指数也随之升高,与添加量呈线性关系.当Zn-Al-Ce-LDHs添加量为50%时,PP的极限氧指数可达到58%,说明Zn-Al-Ce-LDHs能有效地提高复合材料的阻燃性能.
采用不同类型的LDHs、在复合材料中保持相同的添加量,研究了LDHs/PP复合材料的热稳定性,结果表明:在低温段,Zn-Al-Ce-LDHs能有效的延缓复合材料的热降解的反应的发生;在高温段,Zn-Al-Ce-LDHs/PP的残炭量明显高于Mg-Al-LDHs/PP、Mg-Al-Ce-LDHs/PP,说明Zn-Al-Ce-LDHs具有明显的促进复合材料成炭的效果.在采用相同Zn-Al-Ce-LDHs、不同LDHs添加量的复合材料中,复合材料的热稳定性和残炭率仅与添加量有关,且残炭量与添加量基本呈线性关系.
将Zn-Al-Ce-LDHs与EVA进行熔融混合制备成复合材料,对其进行极限氧指数以及锥形量热等燃烧性能测试,结果表明:当Zn-Al-Ce-LDHs的添加量少于40%时,对复合材料的阻燃性提高不明显,但是超过40%时,对复合材料的阻燃性有了大幅度的提高,同时,复合材料的热释放速率和烟释放速率随着Zn-Al-Ce-LDHs添加量的升高而降低,说明Zn-Al-Ce-LDHs对EVA材料的燃烧和发烟具有明显的抑制作用.对复合材料进行热重分析,结果表明:Zn-Al-Ce-LDHs可以有效延缓EVA材料的热分解,并可促进EVA材料的成炭作用,复合材料的热稳定性与Zn-Al-Ce-LDHs的添加量具有线性关系.
以上是正文,麻烦各位了.
请别拿翻译软件来翻译,谢谢合作,如果结果满意小弟会另有积分相送。
1个回答 分类:英语 2014-11-14

问题解答:

我来补答
层状双氢氧化物(简称LDHs)又称水滑石(HT),由于具有独特的层状结构和奇特的性能,添加到聚合物之中,具有环境友好、高效无毒、有效抑烟等优点,其相关研究已成了近几年研究的热点.稀土元素由于具有特殊的电子结构,使其在催化、发光、磁性等领域的应用具有很大的潜力,特别是作为耐火材料添加剂的相关领域的研究受到了广泛重视.从已报道的相关文献来看,一般是以螯合物形式将稀土元素负载到层状双氢氧化物的层间,而直接将稀土元素通过同晶取代置换到LDHs层板上的报道还很少.本论文将采用报道不多,制备简单的微波晶化低饱和共沉淀法,快速制备出一系列含稀土LDHs,考察了掺杂稀土量对LDHs结构的影响,并将其运用到聚合物中研究其对聚合物的阻燃性能、力学性能,抑烟性能等的影响,获得了以下具有创新性的结果.
When layered double hydroxides (LDHs), also called hydrotalcites (HT) are added into polymers, they have the advantages of environmental friendly, highly efficient, nontoxic, smoke inhibiting and other properties due to their unique stratified structure and peculiar performance, and this relevant study has become the major focus of researchers in recent years. In view of rare earth elements’ special electronic structures, it has a great application potential in the fields of catalysis, luminescence and magnetism; particularly as an additive to refractory materials, studies in this related field has been attracting extensive attentions. From the perspective of published documentations, generally the rare earth elements are loaded in between the layers of LDHs in the form of chelate complex; there are limited reports on the method of directly replacing rare earth elements on the layers of LDHs by isomorphous substitution. This essay adopts the rarely reported and simple method of microwave crystallized low saturation co-precipitation to quickly prepare a series of LDhs with rare earth contents; as well as investigates the impact on LDHs’ structure by various different quantities of rare earth doping, and applies it to study its effects on polymers in terms of flame retardation, mechanical property, smoke inhibiting property and so on. The following are the creative results obtained:
通过低饱和态共沉淀法,辅助微波手段,制备了系列含稀土Ce和La的LDHs;并通过XRD和FT-IR等对其结构进行了表征,筛选出结晶度高,晶相单一的样品Zn-Al-Ce-LDHs(n(Zn2+)/n(Al3+)=x,n(Ce4+)/n(Al3+)=y),将其用于聚丙烯(PP)中,考察了复合材料的阻燃性能.当Zn-Al-Ce-LDHs添加量为10%时,将PP的极限氧指数由17.4%提高到42%,而且随着添加量的提高,极限氧指数也随之升高,与添加量呈线性关系.当Zn-Al-Ce-LDHs添加量为50%时,PP的极限氧指数可达到58%,说明Zn-Al-Ce-LDHs能有效地提高复合材料的阻燃性能.
A series of LDHs with cerium and lanthanum were prepared by low saturation co-precipitation assisted by microwave means, and by characterizing their structures with X-ray diffraction and FT-Infrared spectroscopy, high crystalline, single crystal phase samples of Zn-Al-Ce-LDHs were selected. [(n(Zn2+)/n(Al3+)=x,n(Ce4+)/n(Al3+)=y)]. Then they were applied to Polypropylene (PP) and the flame retardant property of the composite materials was investigated. When the addition of Zn-Al-Ce-LDHs was 10%, the limited oxygen index of PP was elevated from 17.4% to 42%, and the index kept on rising as the amount of addition was increased, indicating a linear relationship with the amount of addition. When the addition of Zn-Al-Ce-LDHs was 50%, the limited oxygen index of PP could reach 58%, this showed that Zn-Al-Ce-LDHs can effectively improve the flame retardant property of the composite materials.
采用不同类型的LDHs、在复合材料中保持相同的添加量,研究了LDHs/PP复合材料的热稳定性,结果表明:在低温段,Zn-Al-Ce-LDHs能有效的延缓复合材料的热降解的反应的发生;在高温段,Zn-Al-Ce-LDHs/PP的残炭量明显高于Mg-Al-LDHs/PP、Mg-Al-Ce-LDHs/PP,说明Zn-Al-Ce-LDHs具有明显的促进复合材料成炭的效果.在采用相同Zn-Al-Ce-LDHs、不同LDHs添加量的复合材料中,复合材料的热稳定性和残炭率仅与添加量有关,且残炭量与添加量基本呈线性关系.
The thermal stability of LDHs/PP composite materials was studied by adopting different types of LDHs with similar amount of addition to the composite materials; the result had shown that at the low temperature range, Zn-Al-Ce-LDHs could effectively delay the composite materials’ reaction to thermal degradation; while at the high temperature range, the char residue of Zn-Al-Ce-LDHs/PP was significantly more than that of Mg-Al-LDHs/PP and Mg-Al-Ce-LDHs/PP; this explained the distinct effect of Zn-Al-Ce-LDHs in promoting char formation of the composite materials. When adopting similar Zn-Al-Ce-LDHs with different amounts of addition, the thermal stability and char residue of the composite materials were only relative to the amounts of addition, and the char residue and the additions basically showed a linear relationship.
将Zn-Al-Ce-LDHs与EVA进行熔融混合制备成复合材料,对其进行极限氧指数以及锥形量热等燃烧性能测试,结果表明:当Zn-Al-Ce-LDHs的添加量少于40%时,对复合材料的阻燃性提高不明显,但是超过40%时,对复合材料的阻燃性有了大幅度的提高,同时,复合材料的热释放速率和烟释放速率随着Zn-Al-Ce-LDHs添加量的升高而降低,说明Zn-Al-Ce-LDHs对EVA材料的燃烧和发烟具有明显的抑制作用.对复合材料进行热重分析,结果表明:Zn-Al-Ce-LDHs可以有效延缓EVA材料的热分解,并可促进EVA材料的成炭作用,复合材料的热稳定性与Zn-Al-Ce-LDHs的添加量具有线性关系.
A composite material was prepared by melt compounding Zn-Al-Ce-LDHs with EVA, and flammability testing such as limited oxygen index and cone calorimetry was conducted; the results had shown that when the amount of Zn-Al-Ce-LDHs addition was less than 40%, there was no obvious enhancement of flame retardant property of the composite material; but when exceeding 40%, the flame retardant property of the composite material increased remarkably; at the same time, the heat and smoke emission rates of the composite material decreased as the addition of Zn-Al-Ce-LDHs was increased; this explained that Zn-Al-Ce-LDHs had a significant inhibiting function on the combustion and fuming of EVA materials. The results of thermogravimetric analysis conducted on the composite material had shown that Zn-Al-Ce-LDHs could effectively delay the thermal degradation of EVA material and promote its char formation function; it was also noted that the thermal stability of composite materials and the amount of addition of Zn-Al-Ce-LDHs had a linear relationship.
【英语牛人团】
再问: 你的答案很接近了哥们,但是你能找点相关的文章看看吗?有点说法在科技文献里不是这么说的,如果您能完善一下我马上采纳
再答: 不大明白您的意思。如果是指表达方面,我是按你的内容翻译的。
再问: 是一些语法,在科技论文里有些语法是不用这么复杂的,就是有点……类似于Chinglish的说法,就是比较直,呵呵,我自己改改就行了,谢谢您了,答案已采纳,谢谢
 
 
展开全文阅读
剩余:2000
上一页:算数过程
下一页:enjoy的反义词